RED ROSE SENIOR SECONDARY SCHOOL

CLASS – XI Mathematics

ASSIGNMENT PROBLEM - A

1. Find the degree measure corresponding to the following radian measures:

$$(i).\left(\frac{2\pi}{15}\right)^c$$
 $(ii).\left(\frac{1}{4}\right)^c$ $(iii).-2^c$ $(iv).\left(\frac{11}{16}\right)^c$ Ans. 24°; 14°19′5″; -(114°32′44″); 39°22′30″

2. Express 1.2 rad in degree measure.

Ans. 68⁰43′(37.8)″

3. Express the following angles in radians:

$$(i).1'$$
 $(ii).20^{0}$ $(iii).135^{0}$

Ans. $\frac{\pi}{10800}$; $\frac{\pi}{9}$; $\frac{3\pi}{4}$

4. Express $45^{\circ}20'10''$ in radian measure ($\pi = 3.1415$)

Ans. 0.79 rad

- 5. Express in radians the forth angle of a quadrilateral which has three angles of $46^{\circ}30'10''$, $75^{\circ}44'45''$, $123^{\circ}9'35''$ respectively. $Ans. \frac{13751}{21600} \pi$
- 6. Express in radians and also in degrees the angle of a regular polygon of (i). 40 sides and (ii). n sides.

Ans. $\frac{19}{20}\pi$, 171°; $\left(\frac{n-2}{n}\right)\pi$ rad, $\left(\frac{n-2}{n}\right)$ 180°

7. Find the angle between the minute hand and the hour hand of a clock when the time is 7:20 AM.

 $Ans.\,100^{0}$

- 8. Find in degrees and radians the angle between the hour hand and the minute hand of a clock at half past three.

 Ans. 75°; $\frac{5\pi}{12}$ rad
- 9. Find the length of an arc of a circle of radius 5 cm subtending a central angle measuring 15° . Ans. $\frac{5\pi}{12}$ cm
- 10. In a circle of diameter 40 cm the length of a chord is 20 cm. Find the length of minor arc corresponding to the chord.

 Ans. $\frac{20\pi}{3}$ cm
- 11. If arcs of same length in two circles subtend angles of 60° and 75° at their centers, find the ratios of their radii.

 Ans. $r_1: r_2 = 5: 4$
- 12. The perimeter of a certain sector of a circle is equal to the length of the arc of the semi-circle having the same radius, express the angle of the sector in degrees, minutes and seconds.

 Ans. 65⁰27'16"
- 13. The angles of a triangle are in A.P. The number of grades in the least, is to the number of radian in the greatest as $40:\pi$. Find the angles in degrees.

 Ans. 20° , 60° and 100°
- 14. The length of a pendulum is 8 m while the pendulum swings through 1.5 rad, find the length of the arc through which the tip of the pendulum passes.

 Ans. 12 cm
- 15. The minute hand of a clock is 15 cm long. How does for the tip of the hand move during 40 minutes?

 Ans. 62.8 cm
- 16. A central angle of circle of radius 50 cm intercepts an arc of 10 cm. Express the central angle θ in radians and in degrees.

 Ans. $\frac{1}{5}$ rad; $11^027'17''$
- 17. A circular wire of radius 2.5 cm is cut and bent so as to lie along the circumference of a hoop whose radius is 1m 29 cm. Find in degrees the angle which is subtended at the centre of the loop.

Ans. 6.98°

18. The moon's distance from the earth is 360000 km and its diameter subtends an angle of 31' at the eye of the observer. Find the diameter of the moon.

Ans. $3247\frac{13}{21}$

- 19. If the angular diameter of the moon is 30′, how for from the eye a coin of diameter 2.2 cm can be kept to hide the moon?

 Ans. 252 cm
- 20. A railway train is travelling on a curve of 750 m radius at the rate of 30 km/h, through what angle has it turned in 10 seconds.

 Ans. $\frac{1}{9}$ rad
- 21. A horse is tethered to a stake by a rope 810 cm long. If the horse moves along the circumference of a circle always keeping the rope tight, find how far it will have gone when the rope has traced out an angle of 70° .

 Ans. 990 cm
- 22. A horse is tied to a post by a rope. If the horse moves along a circular path always keeping the rope tight and describes 88 m when it has traced out 72^0 at the center, find the length of the rope.

Ans. 70 m

- 23. The area of the sector is 5.024 cm^2 and its angle is 36^0 . Find the radius.

 Ans. 4 cm
- 24. Two circles whose centers are A and B tough externally at C. A common tangent touches the circles at P and Q respectively. AP = 8 m and BQ = 2 m. Denoting the angle PAB by α radians, show that the area of the figure bounded by PQ and minor arcs PC and QC is $(40 30\alpha 2\pi) m^2$.
- 25. AB is a diameter of a circle whose centre is O. P is a point on the circumference such that the chord AP = 8 cm and the chord BP = 6 cm. calculate
 - a) The values in radians, of the angles PAB and POB.

 $Ans. \angle PAB = 0.644 \ rad; \angle POB = 1.29 \ rad$

b) The area of the sector bounded by OP, OB and the minor arc PB.

Ans. $16.1 cm^2$

Trigonometric function

ASSIGNMENT PROBLEM - B

- 1. If $\sec \theta = -\frac{13}{12}$ and θ lies in the second quadrant, find the values of all the other five trigonometric functions. Ans. $\sin \theta = \frac{5}{13}$; $\cos \theta = -\frac{12}{5}$; $\tan \theta = -\frac{5}{12} \cot \theta = -\frac{12}{5}$; $\csc \theta = \frac{13}{5}$
- 2. Find the values of:

	i.	$\sin\left(\frac{25\pi}{3}\right)$	Ans. $\frac{\sqrt{3}}{2}$
	ii.	$\tan\left(-\frac{16\pi}{3}\right)$	Ans. $-\sqrt{3}$
	iii.	$\cot\left(\frac{29\pi}{4}\right)$	Ans. 1
	iv.	$\operatorname{cosec}\left(\frac{-33\pi}{4}\right)$	$Ans\sqrt{2}$
	v.	$\cos(15\pi)$	Ans1
	vi.	$\csc(-1110^{0})$	Ans2
	vii.	$\cot(-600^{0})$	Ans. $-\frac{1}{\sqrt{3}}$
	viii.	$\tan\left(\frac{5\pi}{4}\right)$	Ans. 1
3.	If cos	$\theta = \frac{-\sqrt{15}}{4}$ and $\frac{\pi}{2} < \theta < \pi$, find the value of $\sin \theta$.	$Ans.\frac{1}{4}$

4. If
$$\cos \theta = -\frac{1}{2}$$
 and $\pi < \theta < \frac{3\pi}{2}$, find the value of $4 \tan^2 \theta - 3 \csc^2 \theta$. Ans. 8

5. If
$$\sec \theta = \sqrt{2}$$
 and $\frac{3\pi}{2} < \theta < 2\pi$, find the value of $\frac{1 + \tan \theta + \csc \theta}{1 + \cot \theta - \csc \theta}$. Ans. -1

6. Prove that :
$$\sqrt{\frac{1+\cos\theta}{1-\cos\theta}} = \begin{cases} \csc\theta + \cot\theta, & \text{if } 0 < \theta < \pi \\ -\csc\theta - \cot\theta, & \text{if } \pi < \theta < 2\pi \end{cases}$$

7. Prove that :
$$\cos 510^{\circ} \cos 330^{\circ} + \sin 390^{\circ} \cos 120^{\circ} = -1$$
.

8. Prove that : i.
$$\tan 720^{0} - \cos 270^{0} - \sin 150^{0} \cos 120^{0} = \frac{1}{4}$$

ii.
$$\sin 780^{\circ} \sin 480^{\circ} + \cos 120^{\circ} \sin 150^{\circ} = \frac{1}{2}$$

iii.
$$\sin 600^{\circ} \cos 390^{\circ} + \cos 480^{\circ} \sin 150^{\circ} = -1$$

9. Prove that : i.
$$\cot^2 \frac{\pi}{6} + \csc \frac{5\pi}{6} + 3\tan^2 \frac{\pi}{6} = 6$$

ii.
$$\frac{\sin(180^{0}+\theta)\cos(90^{0}+\theta)\tan(270^{0}-\theta)\cot(360^{0}-\theta)}{\sin(360^{0}-\theta)\cos(360^{0}+\theta)\csc(-\theta)\sin(270^{0}+\theta)} = 1$$

$$iii. \ 3\left\{\sin^4\left(\frac{3\pi}{2}-\theta\right)+\sin^4(3\pi+\theta)\right\}-2\left\{\sin^6\left(\frac{\pi}{2}+\theta\right)+\sin^6(5\pi-\theta)\right\}=1$$

$$iv. \left\{1 + \cot \theta - \sec \left(\frac{\pi}{2} + \theta\right)\right\} \left\{1 + \cot \theta + \sec \left(\frac{\pi}{2} + \theta\right)\right\} = 2 \cot \theta$$

$$v. \sin^2 \frac{\pi}{18} + \sin^2 \frac{\pi}{9} + \sin^2 \frac{7\pi}{18} + \sin^2 \frac{4\pi}{9} = 2$$

10. Show that
$$\sin^2 5^0 + \sin^2 10^0 + \sin^2 15^0 \dots + \sin^2 90^0 = 9\frac{1}{2}$$

11. Show that
$$\sec^2 \theta + \csc^2 \theta \ge 4$$
.

12. Show that
$$\sin^2 \theta + \csc^2 \theta \ge 2$$
.

13. If x is any real number then show that
$$\cos \theta$$
 cannot be equal to $x + \frac{1}{x}$.

14. Can
$$6 \sin^2 \theta - 7 \sin \theta + 2 = 0$$
 for any real value of θ .

Ans. yes

15. Show that
$$\sin^2 \theta = \frac{x^2 + y^2}{2xy}$$
 is possible for real values of x and y only when $x = y \neq 0$.

Trigonometric Ratios of Compound Angles

ASSIGNMENT PROBLEM - C

1. If $\cos A = \frac{4}{5}$, $\cos B = \frac{12}{13}$, $\frac{3\pi}{2} < A$, $B < 2\pi$, find the values of the $\cos(A + B)$ and $\sin(A - B)$.

Ans.
$$\frac{33}{65}$$
; $\frac{-16}{65}$

- 2. If $\cot \alpha = \frac{1}{2}$, $\sec \beta = -\frac{5}{3}$ where $\pi < \alpha < \frac{3\pi}{2}$ and $\frac{\pi}{2} < \beta < \pi$. find the value of $\tan(\alpha + \beta)$. State the quadrant in which $\alpha + \beta$ terminates.

 Ans. $\frac{2}{11}$; I quadrant
- 3. Find the values of the following:

$$i. \sin 75^0$$

 $ii. \cos 75^{\circ}$

$$iv.\cos 15^{0}$$

Ans.
$$\frac{\sqrt{3}+1}{2\sqrt{2}}$$
; $\frac{\sqrt{3}-1}{2\sqrt{2}}$; $\frac{\sqrt{3}-1}{2\sqrt{2}}$; $\frac{\sqrt{3}+1}{2\sqrt{2}}$

4. Prove that :
$$\cos\left(\frac{\pi}{4} - A\right)\cos\left(\frac{\pi}{4} - B\right) - \sin\left(\frac{\pi}{4} - A\right)\sin\left(\frac{\pi}{4} - B\right) = \sin(A + B)$$

5. Prove that :
$$\frac{\sin(x+y)}{\sin(x-y)} = \frac{\tan x + \tan y}{\tan x - \tan y}$$
.

- 6. If $\tan A \tan B = x$ and $\cot B \cot A = y$, prove that $\cot(A B) = \frac{1}{x} + \frac{1}{y}$.
- 7. If α and β are acute angle such that $\tan \alpha = \frac{m}{m+1}$ and $\tan \beta = \frac{1}{2m+1}$, prove that $\alpha + \beta = \frac{\pi}{4}$.
- 8. Prove that: i. $\tan 3A \tan 2A \tan A = \tan 3A \tan 2A \tan A$ ii. $\cot A \cot 2A - \cot 3A - \cot 3A \cot A = 1$
- 9. Prove that : $\frac{\cos^2 33^0 \cos^2 57^0}{\sin^2 \frac{21^0}{2} \sin^2 \frac{69^0}{2}} = -\sqrt{2}$
- 10. If $3 \tan A \cdot \tan B = 1$, prove that $2 \cos(A + B) = \cos(A B)$
- 11. If $\cos(\alpha \beta) + \cos(\beta \gamma) + \cos(\gamma \alpha) = -\frac{3}{2}$, prove that $\cos \alpha + \cos \beta + \cos \gamma = \sin \alpha + \sin \beta + \sin \gamma = 1$
- 12. If $\sin B = 3 \sin(2A + B)$, prove that $2 \tan A + \tan(A + B) = 0$
- 13. If $\cos(\alpha + \beta)\sin(\gamma + \delta) = \cos(\alpha \beta)\sin(\gamma \delta)$, prove that $\cot \alpha \cot \beta \cot \gamma = \cot \delta$.
- 14. Prove that : $\frac{\sin(x+\theta)}{\sin(x+\phi)} = \cos(\theta-\phi) + \cot(x+\phi)\sin(\theta-\phi)$.
- 15. If $\cos(\alpha + \beta) = \frac{4}{5}$, $\sin(\alpha \beta) = \frac{5}{13}$ and α , β lie between 0 and $\frac{\pi}{4}$, prove that $\tan 2\alpha = \frac{56}{33}$
- 16. Prove that : $\tan 70^0 = \tan 20^0 + 2 \tan 50^0$
- 17. If $tan(\alpha + \theta) = n tan(\alpha \theta)$, show that : $(n + 1) sin 2\theta = (n 1) sin 2\alpha$.
- 18. If $a \tan \alpha + b \tan \beta = (a + b) \tan \left(\frac{\alpha + \beta}{2}\right)$, where $\alpha \neq \beta$, prove that $a \cos \beta = b \cos \alpha$.
- 19. If $\sin \alpha + \sin \beta = a$ and $\cos \alpha + \cos \beta = b$, show that : $i \cdot \cos(\alpha + \beta) = \frac{b^2 a^2}{b^2 + a^2}$, $ii \cdot \sin(\alpha + \beta) = \frac{2ab}{a^2 b^2}$
- 20. If α and β are the solutions of the equation $a \tan \theta + b \sec \theta = c$, then show that $\tan(\alpha + \beta) = \frac{2ac}{a^2 c^2}$
- 21. Prove that : $\frac{\sin x}{\cos 3x} + \frac{\sin 3x}{\cos 9x} + \frac{\sin 9x}{\cos 27x} = \frac{1}{2} (\tan 27x \tan x).$
- 22. If angle θ is divided into two parts such that the tangents of one part is α times the tangent of the other, and \emptyset is their difference, then show that $\sin \theta = \frac{\alpha + 1}{\alpha 1} \sin \emptyset$.
- 23. If $\tan \theta = \frac{\sin \alpha \cos \alpha}{\sin \alpha + \cos \alpha}$, then show that $\sin \alpha + \cos \alpha = \sqrt{2} \cos \theta$.
- 24. If $\sin \alpha \sin \beta \cos \alpha \cos \beta + 1 = 0$, prove that $1 + \cot \alpha \tan \beta = 0$.
- 25. If $\tan \alpha = x + 1$, $\tan \beta = x 1$, show that $2 \cot(\alpha \beta) = x^2$.